By analyzing such parameters as the force applied by key presses and the time interval between them, a new self-powered non-mechanical intelligent keyboard could provide a stronger layer of security for computer users. The self-powered device generates electricity when a user’s fingertips contact the multi-layer plastic materials that make up the device.
Conventional keyboards record when a keystroke makes a mechanical contact, indicating the press of a specific key. The intelligent keyboard records each letter touched, but also captures information about the amount of force applied to the key and the length of time between one keystroke and the next. Such typing style is unique to individuals, and so could provide a new biometric for securing computers from unauthorized use.
In addition to providing a small electrical current for registering the key presses, the new keyboard could also generate enough electricity to charge a small portable electronic device or power a transmitter to make the keyboard wireless.
An effect known as contact electrification generates current when the user’s fingertips touch a plastic material on which a layer of electrode material has been coated. Voltage is generated through the triboelectric and electrostatic induction effects. Using the triboelectric effect, a small charge can be produced whenever materials are brought into contact and then moved apart.
“Our skin is dielectric and we have electrostatic charges in our fingers,” Wang noted. “Anything we touch can become charged.”
While the self-powered feature could provide a convenience benefit and potentially eliminate the need for batteries in wireless keyboards, Wang believes the major impact of the device may be in helping to secure computers by using individual typing patterns or habits as a biometric.
Sign up on lukeunfiltered.com or to check out our store on thebestpoliticalshirts.com.